Author:
Janson Svante,Szpankowski Wojciech
Abstract
We consider a leader election algorithm in which a set of distributed objects (people, computers, etc.) try to identify one object as their leader. The election process is randomized, that is, at every stage of the algorithm those objects that survived so far flip a biased coin, and those who received, say a tail, survive for the next round. The process continues until only one objects remains. Our interest is in evaluating the limiting distribution and the first two moments of the number of rounds needed to select a leader. We establish precise asymptotics for the first two moments, and show that the asymptotic expression for the duration of the algorithm exhibits some periodic fluctuations and consequently no limiting distribution exists. These results are proved by analytical techniques of the precise analysis of algorithms such as: analytical poissonization and depoissonization, Mellin transform, and complex analysis.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献