Author:
Campos Victor,Lopes Raul,Marino Andrea,Silva Ana
Abstract
A temporal digraph ${\cal G}$ is a triple $(G, \gamma, \lambda)$ where $G$ is a digraph, $\gamma$ is a function on $V(G)$ that tells us the time stamps when a vertex is active, and $\lambda$ is a function on $E(G)$ that tells for each $uv\in E(G)$ when $u$ and $v$ are linked. Given a static digraph $G$, and a subset $R\subseteq V(G)$, a spanning branching with root $R$ is a subdigraph of $G$ that has exactly one path from $R$ to each $v\in V(G)$. In this paper, we consider the temporal version of Edmonds' classical result about the problem of finding $k$ edge-disjoint spanning branchings respectively rooted in given $R_1,\cdots,R_k$. We introduce and investigate different definitions of spanning branchings, and of edge-disjointness in the context of temporal digraphs. A branching ${\cal B}$ is vertex-spanning if the root is able to reach each vertex $v$ of $G$ at some time where $v$ is active, while it is temporal-spanning if each $v$ can be reached from the root at every time where $v$ is active. On the other hand, two branchings ${\cal B}_1$ and ${\cal B}_2$ are edge-disjoint if they do not use the same edge of $G$, and are temporal-edge-disjoint if they can use the same edge of $G$ but at different times. This lead us to four definitions of disjoint spanning branchings and we prove that, unlike the static case, only one of these can be computed in polynomial time, namely the temporal-edge-disjoint temporal-spanning branchings problem, while the other versions are $\mathsf{NP}$-complete, even under very strict assumptions.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mengerian graphs: Characterization and recognition;Journal of Computer and System Sciences;2024-02