Grundy Domination of Forests and the Strong Product Conjecture

Author:

Bell Kayla,Driscoll Keith,Krop Elliot,Wolff Kimber

Abstract

A maximum sequence $S$ of vertices in a graph $G$, so that every vertex in $S$ has a neighbor which is independent, or is itself independent, from all previous vertices in $S$, is called a Grundy dominating sequence. The Grundy domination number, $\gamma_{gr}(G)$, is the length of $S$. We show that for any forest $F$, $\gamma_{gr}(F)=|V(T)|-|\mathcal{P}|$ where $\mathcal{P}$ is a minimum partition of the non-isolate vertices of $F$ into caterpillars in which if two caterpillars of $\mathcal{P}$ have an edge between them in $F$, then such an edge must be incident to a non-leaf vertex in at least one of the caterpillars. We use this result to show the strong product conjecture of B. Brešar, Cs. Bujtás, T. Gologranc, S. Klavžar, G. Košmrlj, B.~Patkós, Zs. Tuza, and M. Vizer, Dominating sequences in grid-like and toroidal graphs, Electron. J. Combin. 23(4): P4.34 (2016), for all forests. Namely, we show that for any forest $G$ and graph $H$, $\gamma_{gr}(G \boxtimes H) = \gamma_{gr}(G) \gamma_{gr}(H)$. We also show that every connected graph $G$ has a spanning tree $T$ so that $\gamma_{gr}(G)\le \gamma_{gr}(T)$ and that every non-complete connected graph contains a Grundy dominating set $S$ so that the induced subgraph of $S$ contains no isolated vertices. 

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computation of Grundy dominating sequences in (co-)bipartite graphs;Computational and Applied Mathematics;2023-11-22

2. Graphs with equal Grundy domination and independence number;Discrete Optimization;2023-05

3. On the length of L-Grundy sequences;Discrete Optimization;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3