Author:
Bell Kayla,Driscoll Keith,Krop Elliot,Wolff Kimber
Abstract
A maximum sequence $S$ of vertices in a graph $G$, so that every vertex in $S$ has a neighbor which is independent, or is itself independent, from all previous vertices in $S$, is called a Grundy dominating sequence. The Grundy domination number, $\gamma_{gr}(G)$, is the length of $S$. We show that for any forest $F$, $\gamma_{gr}(F)=|V(T)|-|\mathcal{P}|$ where $\mathcal{P}$ is a minimum partition of the non-isolate vertices of $F$ into caterpillars in which if two caterpillars of $\mathcal{P}$ have an edge between them in $F$, then such an edge must be incident to a non-leaf vertex in at least one of the caterpillars. We use this result to show the strong product conjecture of B. Brešar, Cs. Bujtás, T. Gologranc, S. Klavžar, G. Košmrlj, B.~Patkós, Zs. Tuza, and M. Vizer, Dominating sequences in grid-like and toroidal graphs, Electron. J. Combin. 23(4): P4.34 (2016), for all forests. Namely, we show that for any forest $G$ and graph $H$, $\gamma_{gr}(G \boxtimes H) = \gamma_{gr}(G) \gamma_{gr}(H)$. We also show that every connected graph $G$ has a spanning tree $T$ so that $\gamma_{gr}(G)\le \gamma_{gr}(T)$ and that every non-complete connected graph contains a Grundy dominating set $S$ so that the induced subgraph of $S$ contains no isolated vertices.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献