A Complete Grammar for Decomposing a Family of Graphs into 3-Connected Components

Author:

Chapuy Guillaume,Fusy Éric,Kang Mihyun,Shoilekova Bilyana

Abstract

Tutte has described in the book "Connectivity in graphs" a canonical decomposition of any graph into 3-connected components. In this article we translate (using the language of symbolic combinatorics) Tutte's decomposition into a general grammar expressing any family ${\cal G}$ of graphs (with some stability conditions) in terms of the subfamily ${\cal G}_3$ of graphs in ${\cal G}$ that are 3-connected (until now, such a general grammar was only known for the decomposition into $2$-connected components). As a byproduct, our grammar yields an explicit system of equations to express the series counting a (labelled) family of graphs in terms of the series counting the subfamily of $3$-connected graphs. A key ingredient we use is an extension of the so-called dissymmetry theorem, which yields negative signs in the grammar and associated equation system, but has the considerable advantage of avoiding the difficult integration steps that appear with other approaches, in particular in recent work by Giménez and Noy on counting planar graphs. As a main application we recover in a purely combinatorial way the analytic expression found by Giménez and Noy for the series counting labelled planar graphs (such an expression is crucial to do asymptotic enumeration and to obtain limit laws of various parameters on random planar graphs). Besides the grammar, an important ingredient of our method is a recent bijective construction of planar maps by Bouttier, Di Francesco and Guitter. Finally, our grammar applies also to the case of unlabelled structures, since the dissymetry theorem takes symmetries into account. Even if there are still difficulties in counting unlabelled 3-connected planar graphs, we think that our grammar is a promising tool toward the asymptotic enumeration of unlabelled planar graphs, since it circumvents some difficult integral calculations.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exact-Size Sampling of Enriched Trees in Linear Time;SIAM Journal on Computing;2023-10-04

2. Enumeration of chordal planar graphs and maps;Discrete Mathematics;2023-01

3. Local Convergence of Random Planar Graphs;Trends in Mathematics;2021

4. Further results on random cubic planar graphs;Random Structures & Algorithms;2020-05

5. Enumeration of labelled 4‐regular planar graphs;Proceedings of the London Mathematical Society;2019-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3