Author:
Dukes Mark,Parviainen Robert
Abstract
This paper presents a bijection between ascent sequences and upper triangular matrices whose non-negative entries are such that all rows and columns contain at least one non-zero entry. We show the equivalence of several natural statistics on these structures under this bijection and prove that some of these statistics are equidistributed. Several special classes of matrices are shown to have simple formulations in terms of ascent sequences. Binary matrices are shown to correspond to ascent sequences with no two adjacent entries the same. Bidiagonal matrices are shown to be related to order-consecutive set partitions and a simple condition on the ascent sequences generate this class.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献