A New Matroid Lift Construction and an Application to Group-Labeled Graphs

Author:

Walsh Zach

Abstract

A well-known result of Brylawski constructs an elementary lift of a matroid $M$ from a linear class of circuits of $M$. We generalize this result by constructing a rank-$k$ lift of $M$ from a rank-$k$ matroid on the set of circuits of $M$. We conjecture that every lift of $M$ arises via this construction. We then apply this result to group-labeled graphs, generalizing a construction of Zaslavsky. Given a graph $G$ with edges labeled by a group, Zaslavsky's lift matroid $K$ is an elementary lift of the graphic matroid $M(G)$ that respects the group-labeling; specifically, the cycles of $G$ that are circuits of $K$ coincide with the cycles that are balanced with respect to the group-labeling. For $k \geqslant 2$, when does there exist a rank-$k$ lift of $M(G)$ that respects the group-labeling in this same sense? For abelian groups, we show that such a matroid exists if and only if the group is isomorphic to the additive group of a non-prime finite field.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Matroid Lifts and Representability;The Electronic Journal of Combinatorics;2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3