Transversals and Bipancyclicity in Bipartite Graph Families

Author:

Bradshaw Peter

Abstract

A bipartite graph is called bipancyclic if it contains cycles of every even length from four up to the number of vertices in the graph. A theorem of Schmeichel and Mitchem states that for $n \geqslant 4$, every balanced bipartite graph on $2n$ vertices in which each vertex in one color class has degree greater than $\frac{n}{2}$ and each vertex in the other color class has degree at least $\frac{n}{2}$ is bipancyclic. We prove a generalization of this theorem in the setting of graph transversals. Namely, we show that given a family $\mathcal{G}$ of $2n$ bipartite graphs on a common set $X$ of $2n$ vertices with a common balanced bipartition, if each graph of $\mathcal G$ has minimum degree greater than $\frac{n}{2}$ in one color class and minimum degree at least $\frac{n}{2}$ in the other color class, then there exists a cycle on $X$ of each even length $4 \leqslant \ell \leqslant 2n$ that uses at most one edge from each graph of $\mathcal G$. We also show that given a family $\mathcal G$ of $n$ bipartite graphs on a common set $X$ of $2n$ vertices meeting the same degree conditions, there exists a perfect matching on $X$ that uses exactly one edge from each graph of $\mathcal G$.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rainbow structures in a collection of graphs with degree conditions;Journal of Graph Theory;2023-04-23

2. From One to Many Rainbow Hamiltonian Cycles;Graphs and Combinatorics;2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3