Author:
Charon Irène,Hudry Olivier,Lobstein Antoine
Abstract
Let $G=(V,E)$ be a connected undirected graph and $S$ a subset of vertices. If for all vertices $v \in V$, the sets $B_r(v) \cap S$ are all nonempty and different, where $B_r(v)$ denotes the set of all points within distance $r$ from $v$, then we call $S$ an $r$-identifying code. We give constructive upper bounds on the best possible density of $r$-identifying codes in four infinite regular graphs, for small values of $r$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献