On Enumeration and Entropy of Ribbon Tilings
-
Published:2023-04-21
Issue:2
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Chen Yinsong,Kargin Vladislav
Abstract
The paper considers ribbon tilings of large regions and their per-tile entropy (the logarithm of the number of tilings divided by the number of tiles). For tilings of general regions by tiles of length $n$, we give an upper bound on the per-tile entropy as $n - 1$. For growing rectangular regions, we prove the existence of the asymptotic per tile entropy and show that it is bounded from below by $\log_2 (n/e)$ and from above by $\log_2(en)$. For growing generalized "Aztec Diamond" regions and for growing "stair" regions, the asymptotic per-tile entropy is calculated exactly as $1/2$ and $\log_2(n + 1) - 1$, respectively.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics