Operators of Equivalent Sorting Power and Related Wilf-equivalences
-
Published:2014-10-09
Issue:4
Volume:21
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Albert Michael,Bouvel Mathilde
Abstract
We study sorting operators $\mathbf{A}$ on permutations that are obtained composing Knuth's stack sorting operator $\mathbf{S}$ and the reversal operator $\mathbf{R}$, as many times as desired. For any such operator $\mathbf{A}$, we provide a size-preserving bijection between the set of permutations sorted by $\mathbf{S} \circ \mathbf{A}$ and the set of those sorted by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$, proving that these sets are enumerated by the same sequence, but also that many classical permutation statistics are equidistributed across these two sets. The description of this family of bijections is based on a bijection between the set of permutations avoiding the pattern $231$ and the set of those avoiding $132$ which preserves many permutation statistics. We also present other properties of this bijection, in particular for finding pairs of Wilf-equivalent permutation classes.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献