Abstract
Let $\mathbb{F}_{q}$ be a finite field of order $q$ with characteristic $p$. An arc is an ordered family of at least $k$ vectors in $\mathbb{F}_{q}^{k}$ in which every subfamily of size $k$ is a basis of $\mathbb{F}_{q}^{k}$. The MDS conjecture, which was posed by Segre in 1955, states that if $k \leq q$, then an arc in $\mathbb{F}_{q}^{k}$ has size at most $q+1$, unless $q$ is even and $k=3$ or $k=q-1$, in which case it has size at most $q+2$. We propose a conjecture which would imply that the MDS conjecture is true for almost all values of $k$ when $q$ is odd. We prove our conjecture in two cases and thus give simpler proofs of the MDS conjecture when $k \leq p$, and if $q$ is not prime, for $k \leq 2p-2$. To accomplish this, given an arc $G \subset \mathbb{F}_{q}^{k}$ and a nonnegative integer $n$, we construct a matrix $M_{G}^{\uparrow n}$, which is related to an inclusion matrix, a well-studied object in combinatorics. Our main results relate algebraic properties of the matrix $M_{G}^{\uparrow n}$ to properties of the arc $G$ and may provide new tools in the computational classification of large arcs.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Nonstandard rank-one nonincreasing maps on symmetric matrices;Linear and Multilinear Algebra;2017-12-28
2. Extending small arcs to large arcs;European Journal of Mathematics;2017-10-30
3. On Arcs and Quadrics;Arithmetic of Finite Fields;2016