Author:
Cavers Michael,Seyffarth Karen
Abstract
The distinguishing chromatic number $\chi_D(G)$ of a graph $G$ is the minimum number of colours required to properly colour the vertices of $G$ so that the only automorphism of $G$ that preserves colours is the identity. For a graph $G$ of order $n$, it is clear that $1\leq\chi_D(G)\leq n$, and it has been shown that $\chi_D(G)=n$ if and only if $G$ is a complete multipartite graph. This paper characterizes the graphs $G$ of order $n$ satisfying $\chi_D(G)=n-1$ or $\chi_D(G)=n-2$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献