Bounds and Extremal Graphs for Total Dominating Identifying Codes
-
Published:2023-07-28
Issue:3
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Foucaud Florent,Lehtilä Tuomo
Abstract
An identifying code $C$ of a graph $G$ is a dominating set of $G$ such that any two distinct vertices of $G$ have distinct closed neighbourhoods within $C$. The smallest size of an identifying code of $G$ is denoted $\gamma^{\text{ID}}(G)$. When every vertex of $G$ also has a neighbour in $C$, it is said to be a total dominating identifying code of $G$, and the smallest size of a total dominating identifying code of $G$ is denoted by $\gamma_t^{\text{ID}}(G)$.
Extending similar characterizations for identifying codes from the literature, we characterize those graphs $G$ of order $n$ with $\gamma_t^{\text{ID}}(G)=n$ (the only such connected graph is $P_3$) and $\gamma_t^{\text{ID}}(G)=n-1$ (such graphs either satisfy $\gamma^{\text{ID}}(G)=n-1$ or are built from certain such graphs by adding a set of universal vertices, to each of which a private leaf is attached).
Then, using bounds from the literature, we remark that any (open and closed) twin-free tree of order $n$ has a total dominating identifying code of size at most $\frac{3n}{4}$. This bound is tight, and we characterize the trees reaching it. Moreover, by a new proof, we show that this upper bound actually holds for the larger class of all twin-free graphs of girth at least 5. The cycle $C_8$ also attains the upper bound. We also provide a generalized bound for all graphs of girth at least 5 (possibly with twins).
Finally, we relate $\gamma_t^{\text{ID}}(G)$ to the similar parameter $\gamma^{\text{ID}}(G)$ as well as to the location-domination number of $G$ and its variants, providing bounds that are either tight or almost tight.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献