The Eigenvalues of Hyperoctahedral Descent Operators and Applications to Card-Shuffling
-
Published:2022-02-25
Issue:1
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
We extend an algebra of Mantaci and Reutenauer, acting on the free associative algebra, to a vector space of operators acting on all graded connected Hopf algebras. These operators are convolution products of certain involutions, which we view as hyperoctahedral variants of Patras's descent operators. We obtain the eigenvalues and multiplicities of all our new operators, as well as a basis of eigenvectors for a subclass akin to Adams operations. We outline how to apply this eigendata to study Markov chains, and examine in detail the case of card-shuffles with flips or rotations.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献