Finding Large Rainbow Trees in Colourings of $K_{n,n}$

Author:

Matthes Julian

Abstract

A subgraph of an edge-coloured graph is called rainbow if all of its edges have distinct colours. An edge-colouring is called locally $k$-bounded if each vertex is incident with at most $k$ edges of the same colour. Recently, Montgomery, Pokrovskiy and Sudakov showed that for large $n$, a certain locally 2-bounded edge-colouring of the complete graph $K_{2n+1}$ contains a rainbow copy of any tree with $n$ edges, thereby resolving a long-standing conjecture by Ringel: For large $n$, $K_{2n+1}$ can be decomposed into copies of any tree with $n$ edges. In this paper, we employ their methods to show that any locally $k$-bounded edge-colouring of the complete bipartite graph $K_{n,n}$ contains a rainbow copy of any tree $T$ with $(1- o(1))n/k$ edges. We show that this implies that every tree with $n$ edges packs at least $n$ times into $K_{n+o(1),n+o(1)}$. We conjecture that for large $n$, $K_{n,n}$ can be decomposed into $n$ copies of any tree with $n$ edges.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3