Up- and Down-Operators on Young's Lattice
-
Published:2021-07-30
Issue:3
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Liu Ricky,Smith Christian
Abstract
The up-operators $u_i$ and down-operators $d_i$ (introduced as Schur operators by Fomin) act on partitions by adding/removing a box to/from the $i$th column if possible. It is well known that the $u_i$ alone satisfy the relations of the (local) plactic monoid, and the present authors recently showed that relations of degree at most 4 suffice to describe all relations between the up-operators. Here we characterize the algebra generated by the up- and down-operators together, showing that it can be presented using only quadratic relations.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics