Tight Bound for the Number of Distinct Palindromes in a Tree
-
Published:2023-04-21
Issue:2
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Gawrychowski Paweł,Kociumaka Tomasz,Rytter Wojciech,Waleń Tomasz
Abstract
For an undirected tree with edges labeled by single letters, we consider its substrings, which are labels of the simple paths between two nodes. A palindrome is a word $w$ equal to its reverse $w^R$. We prove that the maximum number of distinct palindromic substrings in a tree of $n$ edges satisfies $\text{pal}(n)=O(n^{1.5})$. This solves an open problem of Brlek, Lafrenière, and Provençal (DLT 2015), who showed that $\text{pal}(n)=\Omega(n^{1.5})$. Hence, we settle the tight bound of $\Theta(n^{1.5})$ for the maximum palindromic complexity of trees. For standard strings, i.e., for trees that are simple paths, the maximum palindromic complexity is exactly $n+1$.
We also propose an $O(n^{1.5} \log^{0.5}{n})$-time algorithm reporting all distinct palindromes and an $O(n \log^2 n)$-time algorithm finding the longest palindrome in a tree.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. String Covers of a Tree Revisited;String Processing and Information Retrieval;2023