Totally Greedy Coin Sets and Greedy Obstructions
-
Published:2008-07-14
Issue:1
Volume:15
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Cowen L. J.,Cowen Robert,Steinberg Arthur
Abstract
A coin set is a strictly increasing list of positive integers that always begins with 1. A coin set is called greedy when the simple greedy change-making algorithm always produces the fewest number of coins in change. Here, the greedy change-making algorithm repeatedly selects the largest denomination coin less than the remaining amount until it has assembled the correct change. Pearson has provided an efficient algorithm for determining whether a coin set is greedy. We study a stricter property on coin sets, called total greediness, which requires that all initial subsequences of the coin set also be greedy, and a simple property makes it easy to test if a coin set is totally greedy. We begin to explore the theory of greedy obstructions– those coin sets that cannot be extended to greedy coin sets by the addition of coins in larger denominations.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献