Author:
Arman Andrii,Bondarenko Andriy,Prymak Andriy,Radchenko Danylo
Abstract
Let $\chi(\mathbb{E}^n)$ denote the chromatic number of the Euclidean space $\mathbb{E}^n$, i.e., the smallest number of colors that can be used to color $\mathbb{E}^n$ so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of $\mathbb{E}^n$ based on sublattice coloring schemes that establish the following new bounds: $\chi(\mathbb{E}^5)\le 140$, $\chi(\mathbb{E}^n)\le 7^{n/2}$ for $n\in\{6,8,24\}$, $\chi(\mathbb{E}^7)\le 1372$, $\chi(\mathbb{E}^{9})\leq 17253$, and $\chi(\mathbb{E}^n)\le 3^n$ for all $n\le 38$ and $n\in\{48,49\}$.
Publisher
The Electronic Journal of Combinatorics