Every Orientation of a $4$-Chromatic Graph has a Non-Bipartite Acyclic Subgraph
-
Published:2022-01-28
Issue:1
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
Let $f(n)$ denote the smallest integer such that every directed graph with chromatic number larger than $f(n)$ contains an acyclic subgraph with chromatic number larger than $n$. The problem of bounding this function was introduced by Addario-Berry et al., who noted that $f(n) \leqslant n^2$. The only improvement over this bound was obtained by Nassar and Yuster, who proved that $f(2)=3$ using a deep theorem of Thomassen. Yuster asked if this result can be proved using elementary methods. In this short note we provide such a proof.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics