Abstract
We apply lattice point techniques to the study of simultaneous core partitions. Our central observation is that for $a$ and $b$ relatively prime, the abacus construction identifies the set of simultaneous $(a,b)$-core partitions with lattice points in a rational simplex. We apply this result in two main ways: using Ehrhart theory, we reprove Anderson's theorem that there are $(a+b-1)!/a!b!$ simultaneous $(a,b)$-cores; and using Euler-Maclaurin theory we prove Armstrong's conjecture that the average size of an $(a,b)$-core is $(a+b+1)(a-1)(b-1)/24$. Our methods also give new derivations of analogous formulas for the number and average size of self-conjugate $(a,b)$-cores.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献