Osculating Paths and Oscillating Tableaux

Author:

Behrend Roger E.

Abstract

The combinatorics of certain tuples of osculating lattice paths is studied, and a relationship with oscillating tableaux is obtained. The paths being considered have fixed start and end points on respectively the lower and right boundaries of a rectangle in the square lattice, each path can take only unit steps rightwards or upwards, and two different paths within a tuple are permitted to share lattice points, but not to cross or share lattice edges. Such path tuples correspond to configurations of the six-vertex model of statistical mechanics with appropriate boundary conditions, and they include cases which correspond to alternating sign matrices. Of primary interest here are path tuples with a fixed number $l$ of vacancies and osculations, where vacancies or osculations are points of the rectangle through which respectively no or two paths pass. It is shown that there exist natural bijections which map each such path tuple $P$ to a pair $(t,\eta)$, where $\eta$ is an oscillating tableau of length $l$ (i.e., a sequence of $l+1$ partitions, starting with the empty partition, in which the Young diagrams of successive partitions differ by a single square), and $t$ is a certain, compatible sequence of $l$ weakly increasing positive integers. Furthermore, each vacancy or osculation of $P$ corresponds to a partition in $\eta$ whose Young diagram is obtained from that of its predecessor by respectively the addition or deletion of a square. These bijections lead to enumeration formulae for tuples of osculating paths involving sums over oscillating tableaux.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partial Permutation and Alternating Sign Matrix Polytopes;SIAM Journal on Discrete Mathematics;2022-11-15

2. Weight-Preserving Bijections Between Integer Partitions and a Class of Alternating Sign Trapezoids;Annals of Combinatorics;2022-06-03

3. Tableau sequences, open diagrams, and Baxter families;European Journal of Combinatorics;2016-11

4. Hopf algebra structure on packed square matrices;Journal of Combinatorial Theory, Series A;2015-07

5. Multiply-refined enumeration of alternating sign matrices;Advances in Mathematics;2013-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3