Abstract
An $(n,d)$-permutation code of size $s$ is a subset $C$ of $S_n$ with $s$ elements such that the Hamming distance $d_H$ between any two distinct elements of $C$ is at least equal to $d$. In this paper, we give new upper bounds for the maximal size $\mu(n,d)$ of an $(n,d)$-permutation code of degree $n$ with $11\le n\le 14$. In order to obtain these bounds, we use the structure of association scheme of the permutation group $S_n$ and the irreducible characters of $S_n$. The upper bounds for $\mu(n,d)$ are determined solving an optimization problem with linear inequalities.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献