Generalizations of the Strong Arnold Property and the Minimum Number of Distinct Eigenvalues of a Graph
-
Published:2017-06-16
Issue:2
Volume:24
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Barrett Wayne,Fallat Shaun,Hall H. Tracy,Hogben Leslie,Lin Jephian C.-H.,Shader Bryan L.
Abstract
For a given graph $G$ and an associated class of real symmetric matrices whose diagonal entries are governed by the adjacencies in $G$, the collection of all possible spectra for such matrices is considered. Building on the pioneering work of Colin de Verdière in connection with the Strong Arnold Property, two extensions are devised that target a better understanding of all possible spectra and their associated multiplicities. These new properties are referred to as the Strong Spectral Property and the Strong Multiplicity Property. Finally, these ideas are applied to the minimum number of distinct eigenvalues associated with $G$, denoted by $q(G)$. The graphs for which $q(G)$ is at least the number of vertices of $G$ less one are characterized.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献