Author:
Bishnoi Anurag,De Bruyn Bart
Abstract
We construct and study a new near octagon of order $(2,10)$ which has its full automorphism group isomorphic to the group $G_2(4):2$ and which contains $416$ copies of the Hall-Janko near octagon as full subgeometries. Using this near octagon and its substructures we give geometric constructions of the $G_2(4)$-graph and the Suzuki graph, both of which are strongly regular graphs contained in the Suzuki tower. As a subgeometry of this octagon we have discovered another new near octagon, whose order is $(2,4)$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献