The Root Distributions of Ehrhart Polynomials of Free Sums of Reflexive Polytopes
-
Published:2022-07-29
Issue:3
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Hachimori Masahiro,Higashitani Akihiro,Yamada Yumi
Abstract
In this paper, we study the root distributions of Ehrhart polynomials of free sums of certain reflexive polytopes. We investigate cases where the roots of the Ehrhart polynomials of the free sums of $A_d^\vee$'s or $A_d$'s lie on the canonical line $\mathrm{Re}(z)=-\frac{1}{2}$ on the complex plane $\mathbb{C}$, where $A_d$ denotes the root polytope of type A of dimension $d$ and $A_d^\vee$ denotes its polar dual. For example, it is proved that $A_m^\vee \oplus A_n^\vee$ with $\min\{m,n\} \leq 1$ or $m+n \leq 7$, $A_2^\vee \oplus (A_1^\vee)^{\oplus n}$ and $A_3^\vee \oplus (A_1^\vee)^{\oplus n}$ for any $n$ satisfy this property. We also perform computational experiments for other types of free sums of $A_n^\vee$'s or $A_n$'s.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献