Generalizations and Strengthenings of Ryser's Conjecture
-
Published:2021-12-03
Issue:4
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
DeBiasio Louis,Kamel Yigal,McCourt Grace,Sheats Hannah
Abstract
Ryser's conjecture says that for every $r$-partite hypergraph $H$ with matching number $\nu(H)$, the vertex cover number is at most $(r-1)\nu(H)$. This far-reaching generalization of König's theorem is only known to be true for $r\leq 3$, or when $\nu(H)=1$ and $r\leq 5$. An equivalent formulation of Ryser's conjecture is that in every $r$-edge coloring of a graph $G$ with independence number $\alpha(G)$, there exists at most $(r-1)\alpha(G)$ monochromatic connected subgraphs which cover the vertex set of $G$.
We make the case that this latter formulation of Ryser's conjecture naturally leads to a variety of stronger conjectures and generalizations to hypergraphs and multipartite graphs. Regarding these generalizations and strengthenings, we survey the known results, improving upon some, and we introduce a collection of new problems and results.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics