Lattice Polytopes from Schur and Symmetric Grothendieck Polynomials
-
Published:2021-06-18
Issue:2
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Bayer Margaret,Goeckner Bennet,Hong Su Ji,McAllister Tyrrell,Olsen McCabe,Pinckney Casey,Vega Julianne,Yip Martha
Abstract
Given a family of lattice polytopes, two common questions in Ehrhart Theory are determining when a polytope has the integer decomposition property and determining when a polytope is reflexive. While these properties are of independent interest, the confluence of these properties is a source of active investigation due to conjectures regarding the unimodality of the $h^\ast$-polynomial. In this paper, we consider the Newton polytopes arising from two families of polynomials in algebraic combinatorics: Schur polynomials and inflated symmetric Grothendieck polynomials. In both cases, we prove that these polytopes have the integer decomposition property by using the fact that both families of polynomials have saturated Newton polytope. Furthermore, in both cases, we provide a complete characterization of when these polytopes are reflexive. We conclude with some explicit formulas and unimodality implications of the $h^\ast$-vector in the case of Schur polynomials.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献