Author:
Bouyuklieva Stefka,Harada Masaaki,Munemasa Akihiro
Abstract
It is known that there is no extremal singly even self-dual $[n,n/2,d]$ code with minimal shadow for $(n,d)=(24m+2,4m+4)$, $(24m+4,4m+4)$, $(24m+6,4m+4)$, $(24m+10,4m+4)$ and $(24m+22,4m+6)$. In this paper, we study singly even self-dual codes with minimal shadow having minimum weight $d-2$ for these $(n,d)$. For $n=24m+2$, $24m+4$ and $24m+10$, we show that the weight enumerator of a singly even self-dual $[n,n/2,4m+2]$ code with minimal shadow is uniquely determined and we also show that there is no singly even self-dual $[n,n/2,4m+2]$ code with minimal shadow for $m \ge 155$, $m \ge 156$ and $m \ge 160$, respectively. We demonstrate that the weight enumerator of a singly even self-dual code with minimal shadow is not uniquely determined for parameters $[24m+6,12m+3,4m+2]$ and $[24m+22,12m+11,4m+4]$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献