Statistics on the Multi-Colored Permutation Groups
-
Published:2007-03-05
Issue:1
Volume:14
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Bagno Eli,Butman Ayelet,Garber David
Abstract
We define an excedance number for the multi-colored permutation group i.e. the wreath product $({\Bbb Z}_{r_1} \times \cdots \times {\Bbb Z}_{r_k}) \wr S_n$ and calculate its multi-distribution with some natural parameters. We also compute the multi–distribution of the parameters exc$(\pi)$ and fix$(\pi)$ over the sets of involutions in the multi-colored permutation group. Using this, we count the number of involutions in this group having a fixed number of excedances and absolute fixed points.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献