Reduced Word Enumeration, Complexity, and Randomization
-
Published:2022-06-03
Issue:2
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Monical Cara,Pankow Benjamin,Yong Alexander
Abstract
A reduced word of a permutation w is a minimal length expression of w as a product of simple transpositions. We examine the computational complexity, formulas and (randomized) algorithms for their enumeration. In particular, we prove that the Edelman-Greene statistic, defined by S. Billey-B. Pawlowski, is typically exponentially large. This implies a result of B. Pawlowski, that it has exponentially growing expectation. Our result is established by a formal run-time analysis of A. Lascoux and M. P. Schützenberger's transition algorithm. The more general problem of Hecke word enumeration, and its closely related question of counting set-valued standard Young tableaux, is also investigated. The latter enumeration problem is further motivated by work on Brill-Noether varieties due to M. Chan-N. Pflueger and D. Anderson-L. Chen-N. Tarasca.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献