Abstract
We consider the extension to directed graphs of the concept of achromatic number in terms of acyclic vertex colorings. The achromatic number have been intensely studied since it was introduced by Harary, Hedetniemi and Prins in 1967. The dichromaticnumber is a generalization of the chromatic number for digraphs defined by Neumann-Lara in 1982. A coloring of a digraph is an acyclic coloring if each subdigraph induced by each chromatic class is acyclic, and a coloring is complete if for any pair of chromatic classes $x,y$, there is an arc from $x$ to $y$ and an arc from $y$ to $x$. The dichromatic and diachromatic numbers are, respectively, the smallest and the largest number of colors in a complete acyclic coloring. We give some general results for the diachromatic number and study it for tournaments. We also show that the interpolation property for complete acyclic colorings does hold and establish Nordhaus-Gaddum relations.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Coloring k-partite sparse digraphs;Discrete Applied Mathematics;2024-08
2. The digrundy number of digraphs;Discrete Applied Mathematics;2022-08
3. The diachromatic number of double star graph;Journal of Physics: Conference Series;2021-11-01