Author:
Bousquet-Mélou Mireille,Fusy Éric,Préville-Ratelle Louis-François
Abstract
An $m$-ballot path of size $n$ is a path on the square grid consisting of north and east steps, starting at $(0,0)$, ending at $(mn,n)$, and never going below the line $\{x=my\}$. The set of these paths can be equipped with a lattice structure, called the $m$-Tamari lattice and denoted by $\mathcal{T}_n^{(m)}$, which generalizes the usual Tamari lattice $\mathcal{T}_n$ obtained when $m=1$. We prove that the number of intervals in this lattice is $$ \frac {m+1}{n(mn+1)} {(m+1)^2 n+m\choose n-1}. $$ This formula was recently conjectured by Bergeron in connection with the study of diagonal coinvariant spaces. The case $m=1$ was proved a few years ago by Chapoton. Our proof is based on a recursive description of intervals, which translates into a functional equation satisfied by the associated generating function. The solution of this equation is an algebraic series, obtained by a guess-and-check approach. Finding a bijective proof remains an open problem.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献