The Number of Intervals in the $m$-Tamari Lattices

Author:

Bousquet-Mélou Mireille,Fusy Éric,Préville-Ratelle Louis-François

Abstract

An $m$-ballot path of size $n$ is a path on the square grid consisting of north and east steps, starting at $(0,0)$, ending at $(mn,n)$, and never going below the line $\{x=my\}$. The set of these paths can be equipped with a lattice structure, called the $m$-Tamari lattice and denoted by $\mathcal{T}_n^{(m)}$, which generalizes the usual Tamari lattice $\mathcal{T}_n$ obtained when $m=1$. We prove that the number of intervals in this lattice is $$ \frac {m+1}{n(mn+1)} {(m+1)^2 n+m\choose n-1}. $$ This formula was recently conjectured by Bergeron in connection with the study of diagonal coinvariant spaces. The case $m=1$ was proved a few years ago by Chapoton. Our proof is based on a recursive description of intervals, which translates into a functional equation satisfied by the associated generating function. The solution of this equation is an algebraic series, obtained by a guess-and-check approach. Finding a bijective proof remains an open problem.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bijections for generalized Tamari intervals via orientations;European Journal of Combinatorics;2024-03

2. Geometric Realizations of Tamari Interval Lattices Via Cubic Coordinates;Order;2023-02-23

3. Ungarian Markov chains;Electronic Journal of Probability;2023-01-01

4. Hopf dreams and diagonal harmonics;Journal of the London Mathematical Society;2022-03-09

5. Cambrian triangulations and their tropical realizations;European Journal of Combinatorics;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3