Enumeration on Row-Increasing Tableaux of Shape $2 \times n$
-
Published:2019-03-22
Issue:1
Volume:26
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Du Rosena R.X.,Fan Xiaojie,Zhao Yue
Abstract
Recently O. Pechenik studied the cyclic sieving of increasing tableaux of shape $2\times n$, and obtained a polynomial on the major index of these tableaux, which is a $q$-analogue of refined small Schröder numbers. We define row-increasing tableaux and study the major index and amajor index of row-increasing tableaux of shape $2 \times n$. The resulting polynomials are both $q$-analogues of refined large Schröder numbers. For both results we give bijective proofs.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献