Abstract
We generalize the notion of graded posets to what we call sign-graded (labeled) posets. We prove that the $W$-polynomial of a sign-graded poset is symmetric and unimodal. This extends a recent result of Reiner and Welker who proved it for graded posets by associating a simplicial polytopal sphere to each graded poset. By proving that the $W$-polynomials of sign-graded posets has the right sign at $-1$, we are able to prove the Charney-Davis Conjecture for these spheres (whenever they are flag).
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献