Rainbow Paths with Prescribed Ends

Author:

Alishahi Meysam,Taherkhani Ali,Thomassen Carsten

Abstract

It was conjectured in [S. Akbari, F. Khaghanpoor, and S. Moazzeni. Colorful paths in vertex coloring of graphs. Preprint] that, if $G$ is a connected graph distinct from $C_7$, then there is a $\chi(G)$-coloring of $G$ in which every vertex $v\in V(G)$ is an initial vertex of a path $P$ with $\chi(G)$ vertices whose colors are different. In [S. Akbari, V. Liaghat, and A. Nikzad. Colorful paths in vertex coloring of graphs. Electron. J. Combin. 18(1): P17, 9pp, 2011] this was proved with $\lfloor\frac{\chi(G)}{2} \rfloor $ vertices instead of $\chi(G)$ vertices. We strengthen this to $\chi(G)-1$ vertices. We also prove that every connected graph with at least one edge has a proper $k$-coloring (for some $k$) such that every vertex of color $i$ has a neighbor of color $i+1$ (mod $k$). $C_5$ shows that $k$ may have to be greater than the chromatic number. However, if the graph is connected, infinite and locally finite, and has finite chromatic number, then the $k$-coloring exists for every $k \geq \chi(G)$. In fact, the $k$-coloring can be chosen such that every vertex is a starting vertex of an infinite path such that the color increases by $1$ (mod $k$) along each edge. The method is based on the circular chromatic number $\chi_c(G)$. In particular, we verify the above conjecture for all connected graphs whose circular chromatic number equals the chromatic number.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Colorings of complements of line graphs;Journal of Graph Theory;2021-05-26

2. On induced colourful paths in triangle-free graphs;Discrete Applied Mathematics;2019-02

3. Optimal Colorings with Rainbow Paths;Graphs and Combinatorics;2017-05-25

4. Colorful paths for 3-chromatic graphs;Discrete Mathematics;2017-05

5. Dynamic chromatic number of regular graphs;Discrete Applied Mathematics;2012-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3