Author:
Alishahi Meysam,Taherkhani Ali,Thomassen Carsten
Abstract
It was conjectured in [S. Akbari, F. Khaghanpoor, and S. Moazzeni. Colorful paths in vertex coloring of graphs. Preprint] that, if $G$ is a connected graph distinct from $C_7$, then there is a $\chi(G)$-coloring of $G$ in which every vertex $v\in V(G)$ is an initial vertex of a path $P$ with $\chi(G)$ vertices whose colors are different. In [S. Akbari, V. Liaghat, and A. Nikzad. Colorful paths in vertex coloring of graphs. Electron. J. Combin. 18(1): P17, 9pp, 2011] this was proved with $\lfloor\frac{\chi(G)}{2} \rfloor $ vertices instead of $\chi(G)$ vertices. We strengthen this to $\chi(G)-1$ vertices. We also prove that every connected graph with at least one edge has a proper $k$-coloring (for some $k$) such that every vertex of color $i$ has a neighbor of color $i+1$ (mod $k$). $C_5$ shows that $k$ may have to be greater than the chromatic number. However, if the graph is connected, infinite and locally finite, and has finite chromatic number, then the $k$-coloring exists for every $k \geq \chi(G)$. In fact, the $k$-coloring can be chosen such that every vertex is a starting vertex of an infinite path such that the color increases by $1$ (mod $k$) along each edge. The method is based on the circular chromatic number $\chi_c(G)$. In particular, we verify the above conjecture for all connected graphs whose circular chromatic number equals the chromatic number.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献