Author:
Balog Antal,Roche-Newton Oliver,Zhelezov Dmitry
Abstract
We prove several expanders with exponent strictly greater than $2$. For any finite set $A \subset \mathbb R$, we prove the following six-variable expander results:$|(A-A)(A-A)(A-A)| \gg \frac{|A|^{2+\frac{1}{8}}}{\log^{\frac{17}{16}}|A|},$$\left|\frac{A+A}{A+A}+\frac{A}{A}\right| \gg \frac{|A|^{2+\frac{2}{17}}}{\log^{\frac{16}{17}}|A|},$ $\left|\frac{AA+AA}{A+A}\right| \gg \frac{|A|^{2+\frac{1}{8}}}{\log |A|},$ $\left|\frac{AA+A}{AA+A}\right| \gg \frac{|A|^{2+\frac{1}{8}}}{\log |A|}.$
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献