On Linearization Coefficients of $q$-Laguerre Polynomials
-
Published:2020-05-15
Issue:2
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Hwang Byung-Hak,Kim Jang Soo,Oh Jaeseong,Yu Sang-Hoon
Abstract
The linearization coefficient $\mathcal{L}(L_{n_1}(x)\dots L_{n_k}(x))$ of classical Laguerre polynomials $L_n(x)$ is known to be equal to the number of $(n_1,\dots,n_k)$-derangements, which are permutations with a certain condition. Kasraoui, Stanton and Zeng found a $q$-analog of this result using $q$-Laguerre polynomials with two parameters $q$ and $y$. Their formula expresses the linearization coefficient of $q$-Laguerre polynomials as the generating function for $(n_1,\dots,n_k)$-derangements with two statistics counting weak excedances and crossings. In this paper their result is proved by constructing a sign-reversing involution on marked perfect matchings.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献