Author:
McKay B. D.,Wanless I. M.
Abstract
Let $k\geq2$, $m\geq5$ and $n=mk$ be integers. By finding bounds for certain rook polynomials, we identify the $k\times n$ Latin rectangles with the most extensions to $(k+1)\times n$ Latin rectangles. Equivalently, we find the $(n-k)$-regular subgraphs of $K_{n,n}$ which have the greatest number of perfect matchings, and the $(0,1)$-matrices with exactly $k$ zeroes in every row and column which maximise the permanent. Without the restriction on $n$ being a multiple of $k$ we solve the above problem (and the corresponding minimisation problem) for $k=2$. We also provide some computational results for small values of $n$ and $k$. Our results partially settle two open problems of Minc and conjectures by Merriell, and Godsil and McKay.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献