Author:
Bednarska-Bzdęga Małgorzata
Abstract
We study biased $(a:f)$ Avoider-Forcer games played on hypergraphs, in the strict and monotone versions. We give a sufficient condition for Avoider's win, useful in the case of games on hypergraphs whose rank is smaller than $f$. We apply this result to estimate the threshold bias in Avoider-Forcer $(1:f)$ games in which Avoider is trying not to build a copy of a fixed graph $G$ in $K_n$. We also study the $d$-degree $(1:f)$ game in which Avoider's aim is to avoid a spanning subgraph of the minimal degree at least $d$ in $K_n$. We show that the strict 1-degree game has the threshold which is the same as the threshold of the Avoider-Forcer connectivity game.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献