The Bipartite $K_{2,2}$-Free Process and Bipartite Ramsey Number $b(2, t)$
-
Published:2020-10-30
Issue:4
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Bal Deepak,Bennett Patrick
Abstract
The bipartite Ramsey number $b(s,t)$ is the smallest integer $n$ such that every blue-red edge coloring of $K_{n,n}$ contains either a blue $K_{s,s}$ or a red $K_{t,t}$. In the bipartite $K_{2,2}$-free process, we begin with an empty graph on vertex set $X\cup Y$, $|X|=|Y|=n$. At each step, a random edge from $X\times Y$ is added under the restriction that no $K_{2,2}$ is formed. This step is repeated until no more edges can be added. In this note, we analyze this process and prove that the resulting graph shows that $b(2,t) =\Omega(t^{3/2}/\log t)$, thereby improving the best known lower bound.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics