Forbidden Triples Generating a Finite set of 3-Connected Graphs
-
Published:2015-07-17
Issue:3
Volume:22
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Egawa Yoshimi,Fujisawa Jun,Furuya Michitaka,Plummer Michael D,Saito Akira
Abstract
For a graph $G$ and a set $\mathcal{F}$ of connected graphs, $G$ is said be $\mathcal{F}$-free if $G$ does not contain any member of $\mathcal{F}$ as an induced subgraph. We let $\mathcal{G} _{3}(\mathcal{F})$ denote the set of all $3$-connected $\mathcal{F}$-free graphs. This paper is concerned with sets $\mathcal{F}$ of connected graphs such that $|\mathcal{F}|=3$ and $\mathcal{G} _{3}(\mathcal{F})$ is finite. Among other results, we show that for an integer $m\geq 3$ and a connected graph $T$ of order greater than or equal to $4$, $\mathcal{G} _{3}(\{K_{4},K_{2,m},T\})$ is finite if and only if $T$ is a path of order $4$ or $5$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献