Generalized Spectral Characterization of Graphs Revisited

Author:

Wang Wei

Abstract

A graph $G$ is said to be determined by its generalized spectrum (DGS for short) if for any graph $H$, $H$ and $G$ are cospectral with cospectral complements implies that $H$ is isomorphic to $G$. Wang and Xu (2006) gave some methods for determining whether a family of graphs are DGS. In this paper, we shall review some of the old results and present some new ones along this line of research.More precisely, let $A$ be the adjacency matrix of a graph $G$, and let $W=[e,Ae,\cdots,A^{n-1}e]$ ($e$ is the all-one vector) be its walk-matrix. Denote by $\mathcal{G}_n$ the set of all graphs on $n$ vertices with $\det(W)\neq 0$. We define a large family of graphs $$\mathcal{F}_n=\{G\in{\mathcal{G}_n}|\frac{\det(W)}{2^{\lfloorn/2\rfloor}}\mbox{is square-free and }2^{\lfloorn/2\rfloor+1}\not|\det(W)\}$$ (which may have positive density among all graphs, as suggested by some numerical experiments). The main result of the paper shows that for any graph $G\in {\mathcal{F}_n}$, if there is a rational orthogonal matrix $Q$ with $Qe=e$ such that $Q^TAQ$ is a (0,1)-matrix, then $2Q$ must be an integral matrix (and hence, $Q$ has well-known structures). As a consequence, we get the conclusion that almost all graphs in $\mathcal{F}_n$ are DGS.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3