Abstract
For integers $r \geq 3$ and $t \geq 2$, an $r$-uniform {\em $t$-daisy} $\D^t_r$ is a family of $\binom{2t}{t}$ $r$-element sets of the form$$\{S \cup T \ : T\subset U, \ |T|=t \}$$for some sets $S,U$ with $|S|=r-t$, $|U|=2t$ and $S \cap U = \emptyset$. It was conjectured by Bollobás, Leader and Malvenuto (and independently by Bukh) that the Turán densities of $t$-daisies satisfy $\lim\limits_{r \to \infty} \pi(\D_r^t) = 0$ for all $t \geq 2$; this has become a well-known problem, and it is still open for all values of $t$. In this paper, we give lower bounds for the Turán densities of $r$-uniform $t$-daisies. To do so, we introduce (and make some progress on) the following natural problem in additive combinatorics: for integers $m \geq 2t \geq 4$, what is the maximum cardinality $g(m,t)$ of a subset $R$ of $\mathbb{Z}/m\mathbb{Z}$ such that for any $x \in \mathbb{Z}/m\mathbb{Z}$ and any $2t$-element subset $X$ of $\mathbb{Z}/m\mathbb{Z}$, there are $t$ distinct elements of $X$ whose sum is not in the translate $x+R$? This is a slice-analogue of an extremal Hilbert cube problem considered by Gunderson and Rődl as well as Cilleruelo and Tesoro.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Turán numbers of r-graphs on r + 1 vertices;Journal of Combinatorial Theory, Series B;2024-11