Maximal Nontraceable Graphs with Toughness less than One
-
Published:2008-01-21
Issue:1
Volume:15
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Bullock Frank,Frick Marietjie,Singleton Joy,Van Aardt Susan,Mynhardt Kieka (C.M.)
Abstract
A graph $G$ is maximal nontraceable (MNT) if $G$ does not have a hamiltonian path but, for every $e\in E\left( \overline{G}\right) $, the graph $G+e$ has a hamiltonian path. A graph $G$ is 1-tough if for every vertex cut $S$ of $G$ the number of components of $G-S$ is at most $|S|$. We investigate the structure of MNT graphs that are not 1-tough. Our results enable us to construct several interesting new classes of MNT graphs.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献