Abstract
For a finite abelian group $G$ and positive integers $m$ and $h$, we let $$\rho(G, m, h) = \min \{ |hA| \; : \; A \subseteq G, |A|=m\}$$ and$$\rho_{\pm} (G, m, h) = \min \{ |h_{\pm} A| \; : \; A \subseteq G, |A|=m\},$$ where $hA$ and $h_{\pm} A$ denote the $h$-fold sumset and the $h$-fold signed sumset of $A$, respectively. The study of $\rho(G, m, h)$ has a 200-year-old history and is now known for all $G$, $m$, and $h$. Here we prove that $\rho_{\pm}(G, m, h)$ equals $\rho (G, m, h)$ when $G$ is cyclic, and establish an upper bound for $\rho_{\pm} (G, m, h)$ that we believe gives the exact value for all $G$, $m$, and $h$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献