Author:
Nath Rishi,Sellers James A.
Abstract
Integer partitions which are simultaneously $t$-cores for distinct values of $t$ have attracted significant interest in recent years. When $s$ and $t$ are relatively prime, Olsson and Stanton have determined the size of the maximal $(s,t)$-core $\kappa_{s,t}$. When $k\geq 2$, a conjecture of Amdeberhan on the maximal $(2k-1,2k,2k+1)$-core $\kappa_{2k-1,2k,2k+1}$ has also recently been verified by numerous authors.In this work, we analyze the relationship between maximal $(2k-1,2k+1)$-cores and maximal $(2k-1,2k,2k+1)$-cores. In previous work, the first author noted that, for all $k\geq 1,$$$\vert \, \kappa_{2k-1,2k+1}\, \vert = 4\vert \, \kappa_{2k-1,2k,2k+1}\, \vert$$and requested a combinatorial interpretation of this unexpected identity. Here, using the theory of abaci, partition dissection, and elementary results relating triangular numbers and squares, we provide such a combinatorial proof.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献