Author:
Qiao Zhi,Du Shao Fei,Koolen Jack H
Abstract
In this note, we construct bipartite $2$-walk-regular graphs with exactly 6 distinct eigenvalues as the point-block incidence graphs of group divisible designs with the dual property. For many of them, we show that they are 2-arc-transitive dihedrants. We note that some of these graphs are not described in Du et al. (2008), in which they classified the connected 2-arc transitive dihedrants.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献