A $[k,k+1]$-Factor Containing A Given Hamiltonian Cycle
-
Published:1998-11-27
Issue:1
Volume:6
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Mao-cheng Cai,Li Yanjun,Kano Mikio
Abstract
We prove the following best possible result. Let $k\ge 2$ be an integer and $G$ be a graph of order $n$ with minimum degree at least $k$. Assume $n \ge 8k-16$ for even $n$ and $n \ge 6k-13$ for odd $n$. If the degree sum of each pair of nonadjacent vertices of $G$ is at least $n$, then for any given Hamiltonian cycle $C$ of $G$, $G$ has a $[k,\,k+1]$-factor containing $C$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Binding Numbers and Connected Factors;Graphs and Combinatorics;2010-05-29