Pruned Inside-Out Polytopes, Combinatorial Reciprocity Theorems and Generalized Permutahedra
-
Published:2022-12-02
Issue:4
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
Generalized permutahedra are a class of polytopes with many interesting combinatorial subclasses. We introduce pruned inside-out polytopes, a generalization of inside-out polytopes introduced by Beck-Zaslavsky (2006), which have many applications such as recovering the famous reciprocity result for graph colorings by Stanley. We show (quasi-)polynomiality and reciprocity results for the integer point count of pruned inside-out polytopes by applying classical Ehrhart polynomials and Ehrhart-Macdonald reciprocity. This yields a geometric perspective on and a generalization of a combinatorial reciprocity theorem for generalized permutahedra by Aguiar-Ardila (2017), Billera-Jia-Reiner (2009), and Karaboghossian (2022). Applying this reciprocity theorem to hypergraphic polytopes allows to give a geometric proof of a combinatorial reciprocity theorem for hypergraph colorings by Aval-Karaboghossian-Tanasa (2020). This proof relies, aside from the reciprocity for generalized permutahedra, only on elementary geometric and combinatorial properties of hypergraphs and their associated polytopes.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics